Parahoric group schemes and nilpotent sections

George McNinch

2023-05-07

The setting

- let \mathscr{A} be a complete discrete valuation ring, K its field of fractions, and $\mathfrak{f} = \mathscr{A}/\pi \mathscr{A}$ its residue field.
- note that we make no assumption about \mathfrak{f} it may be *imperfect*, for example.
- and let G be a connected and reductive linear alg group over K.
- write $\mathfrak{g} = \operatorname{Lie}(G)$ for the *Lie algebra* of *G*
- goal, put broadly: study the G(K) orbits on $\mathcal{N}(K)$, where \mathcal{N} is the variety of nilpotent elements in \mathfrak{g} .

Parahoric group schemes

• if G is split reductive over K – i.e. if G has a maximal torus T isomorphic to $\prod^{d} \mathbf{G}_{m}$ over K – there is a reductive group scheme \mathscr{G} over \mathscr{A} for which $G = \mathscr{G}_{\mathrm{K}}$.

indeed, for any root datum, there corresponds a split reductive group scheme $\mathscr{G}_{\mathbf{Z}}$ over the integers; now take $\mathscr{G} = (\mathscr{G}_{\mathbf{Z}})_{\mathscr{A}}$.

• Bruhat-Tits defined a class of smooth group schemes \mathscr{P} over \mathscr{A} for which $\mathscr{P}_{\mathrm{K}} = G$ known as parahoric group schemes.

When G is split, the split reductive group scheme ${\mathscr G}$ is one of these parahorics.

• Assume that $G_{\mathcal{L}}$ is split reductive for some unramified extension $\mathcal{K} \subset \mathcal{L}$. Then the unipotent radical $R_u \mathscr{P}_{\mathfrak{f}}$ is defined and split over \mathfrak{f} . • Theorem (McNinch 2020) Assume that $G_{\rm L}$ is split reductive for some unramified extension K \subset L. Let \mathscr{P} be a parahoric group scheme with $\mathscr{P}_{\rm K} = G$.

Then there is a closed \mathscr{A} -subgroup scheme $\mathscr{M} \subset \mathscr{P}$ such that

- \mathcal{M} is a reductive group scheme over \mathcal{A}
- $-\mathcal{M}_{\mathrm{f}}$ is a Levi factor of \mathscr{P}_{f}
- $-M_{\rm K}$ is a reductive subgroup of G containing a maximal torus ("maximal rank reductive subgroup")
- In fact, \mathscr{M}_{K} is the centralizer of the image of a homomorphism $\mu \to G$ where $\mu = \lim \mu_n$

in particular, the geometric conjugacy classes of the \mathscr{M}_{K} are described by sub-diagrams of the extended Dynkin diagram of G (description of *Borel-de Siebenthal*)

"Standard" groups

- when the characteristic is "nice enough", the *geometric* nilpotent orbits for G are "the same" as in char. 0.
- this holds for the class of *standard* reductive groups over a field (McNinch and Testerman 2016).
 - simple groups in very good characteristic are standard ("very good" means: p is good for G and the order of the co-center of $G_{\rm sc}$ is prime to p)
 - the class of standard groups is closed under separable isogeny
 - the class of standard groups is closed under taking connected centralizers of diagonalizable subgroups
 - $G \times T$ is standard $\iff G$ is standard, where T is a torus.
- I hope the terminology "standard groups" suggests a generalization of J.C. Jantzen's *standard hypotheses*
- over a field GL(V) is standard, while SL(V) is standard $\Leftrightarrow \dim V \not\equiv 0 \pmod{p}$.
- If G is standard, $x\in G({\rm K}),$ and $X\in {\rm Lie}(G)({\rm K})$ then $C_G(x)$ and $C_G(X)$ are smooth over ${\rm K}$

Nilpotent orbits

- we'll say that a reductive group scheme \mathscr{G} is *standard* if \mathscr{G}_K and $\mathscr{G}_{\mathfrak{f}}$ are standard.
- For a parahoric group scheme \mathscr{P} , we say that $\mathscr{X} \in \operatorname{Lie}(\mathscr{P})$ is a balanced *nilpotent section* provided that

 - $-\mathscr{X}_{\mathrm{K}}$ is nilpotent (so also $\mathscr{X}_{\mathfrak{f}}$ is nilpotent) $-C_{\mathrm{K}} = C_G(\mathscr{X}_{\mathrm{K}})$ and $C_{\mathfrak{f}} = C_{\mathscr{P}_{\mathfrak{f}}}(\mathscr{X}_{\mathfrak{f}})$ are smooth group schemes with $\dim C_{\mathrm{K}} = \dim C_{\mathrm{f}}.$
- **Theorem** (McNinch 2008, 2021) Suppose that \mathscr{G} is a standard reductive group scheme over \mathscr{A} with $G = \mathscr{G}_{\mathsf{K}}$ and let $X \in \mathrm{Lie}(\mathscr{G}_{\mathfrak{f}})$ be a nilpotent element.

Then there is a balanced nilpotent section $\mathscr{X} \in \operatorname{Lie}(\mathscr{G})$ with $\mathscr{X}_{\mathfrak{f}} = X$ together with an \mathscr{A} -homomorphism ϕ : $\mathbf{G}_{m/\mathscr{A}} \to \mathscr{G}$ such that ϕ_K is a cocharacter associated with \mathscr{X}_K and ϕ_k is a cocharacter associated with $\mathscr{X}_{\mathsf{f}}.$

• target: obtain a similar result for general parahoric group schemes.

Existence of SL₂-homomorphisms

- let ${\mathscr G}$ be a standard reductive group scheme over ${\mathscr A},$ let ${\mathscr X}\in {\rm Lie}({\mathscr G})$ be a balanced nilpotent section, and let $\phi: \mathbf{G}_{m/\mathscr{A}} \to \mathscr{G}$ be associated to \mathscr{X} as in the conclusion of the previous Theorem.
- Theorem (McNinch 2021) If $\mathscr{X}_{\mathfrak{f}}^{[p]} = 0$ then there is a unique homomorphism $\Phi: \operatorname{SL}_{2,\mathscr{A}} \to \mathscr{G}$ such that

$$\begin{aligned} &-\mathscr{X} = d\Phi \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \\ &-\phi(t) = \Phi \begin{bmatrix} t & 0 \\ 0 & t^{-1} \end{bmatrix} \end{aligned}$$

Balanced sections for parahorics

• let \mathscr{G} be standard reductive group scheme, and suppose that the characteristic p of f satisfies p > 2h - 2 where h is the Coxeter number of the root datum of $G_{K_{alg}}$

And let \mathscr{P} be a parahoric group scheme for $G = \mathscr{G}_{K}$.

• Theorem (McNinch 2021) Suppose that $X_0 \in \text{Lie}(\mathscr{P}_{f}/R)$ is nilpotent, where $R = R_u(\mathscr{P}_{\mathfrak{f}}).$

Then there is a balanced nilpotent section $\mathscr{X} \in \operatorname{Lie}(\mathscr{P})$ for which $\mathscr{X}_{\mathfrak{f}}$ has image X_0 in $\operatorname{Lie}(\mathscr{P}_{\mathfrak{f}}/R)$.

- construction:
 - first, use the Levi decomposition of $\mathscr{P}_{\mathfrak{f}}$ to find $X_1 \in \operatorname{Lie}(\mathscr{M}_{\mathfrak{f}}) \subset \operatorname{Lie}(\mathscr{P}_{\mathfrak{f}})$ with image X_0 .
 - Since \mathcal{M} is standard reductive group scheme, we may choose a balanced section $\mathscr{X} \in \operatorname{Lie}(\mathcal{M})$ with $\mathscr{X}_{\mathsf{f}} = X_1$.
 - Characteristic assumptions imply $X_1^{[p]} = 0$. So we may find an SL₂-homomorphism $\Phi : \operatorname{SL}_{2/\mathscr{A}} \to \mathscr{M}$ for which

$$\mathscr{X} = d\Phi \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

- the assumptions on p guarantee that the adjoint action of the image of Φ on each of the fibers of Lie(\mathscr{P}) is *semisimple*, which permits the conclusion that \mathscr{X} is balanced in Lie(\mathscr{P})

Main consequence

• the assignment " $X_0 \to \mathscr{X}_K$ " is the same as the assignment given by DeBacker (DeBacker 2002).

(the proof that this is so depends on some conjugacy results I'm suppressing here...)

- get a "Bala-Carter" like result, namely:
 - Theorem Suppose p > 2h-2. Let $X_1 \in \text{Lie}(G)$ be nilpotent. Then there is a K-subgroup $M \subset G$ such that
 - * M is an unramified reductive subgroup containing a maximal torus of ${\cal G}$
 - * $X_1 \in \operatorname{Lie}(M)$ is (geometrically) distinguished for the action of M.
 - "*M* is unramified" means that $M = \mathcal{M}_{\mathrm{K}}$ for a reductive group scheme \mathcal{M} . In particular, *M* has a maximal torus that splits over an unramified extension of K.

Example

- For $X_0 \in \text{Lie}(G)$ the ramification behavior of tori in $C_G^0(X)$ constrains the possible \mathscr{P} for which there is $\mathscr{X} \in \text{Lie}(\mathscr{P})$ with $X_0 = \mathscr{X}_{\text{K}}$.
- Let $G = \operatorname{Sp}(V)$ with dim V = 4m and suppose p > 2.
- and let L be an étale algebra of degree 2 over K.
- consider a torus $S = R^1_{L/K} \mathbf{G}_m$ in G such that geometrically S has precisely two weights on $V_{K_{sep}}$ and for which the weight spaces are maximal isotropic subspaces.
- there is a nilpotent element $X_0 \in \mathfrak{g}(\mathbf{K})$ acting with partition (2m, 2m) for which S is a Levi factor of $C_G(X)$.
- as above, there is \mathscr{X} with $\mathscr{X}_{\mathrm{K}} = X_0$ where:
 - L unramified $\Rightarrow \mathscr{X} \in \operatorname{Lie}(\operatorname{GL}_{2m/\mathscr{A}})$
 - L ramified $\Rightarrow \mathscr{X} \in \operatorname{Lie}(\operatorname{Sp}_{2m,\mathscr{A}} \times \operatorname{Sp}_{2m,\mathscr{A}})$

Thanks for your attention!

Bibliography

DeBacker, Stephen. 2002. "Parametrizing Nilpotent Orbits via Bruhat-Tits Theory." Annals of Mathematics. Second Series 156 (1): 295–332. https: //doi.org/10.2307/3597191.

McNinch, George. 2008. "The Centralizer of a Nilpotent Section." Nagoya Mathematical Journal 190: 129–81.

—. 2016. "Erratum to "The Centralizer of a Nilpotent Section"." https://gmcninch-tufts.github.io/math/assets/manuscripts/errata/erratum:-the-centralizer-of-a-nilpotent-section.pdf.

—. 2020. "Reductive Subgroup Schemes of a Parahoric Group Scheme." *Transformation Groups* 25 (1): 217–49. https://doi.org/10.1007/s00031-018-9508-3.

—. 2021. "Nilpotent Elements and Reductive Subgroups over a Local Field." Algebras and Representation Theory 24: 1479–1522. https://doi.org/10.1007/s10468-020-10000-2.

McNinch, George, and Donna M. Testerman. 2016. "Central Subalgebras of the Centralizer of a Nilpotent Element." Proceedings of the American Mathematical Society 144 (6): 2383–97. https://doi.org/10.1090/proc/12942.