Reductive subgroups of a reductive algebraic group over a local field

George McNinch

2021 - 11 - 20

1 Overview

- This talk concerns recent work of the speaker McNinch (2021) and McNinch (2020) on reductive groups over a local field.
- Ultimately this work originated from attempts to give a different perspective on construction(s) of (DeBacker 2002).
- These notes will be posted at https://gmcninch-tufts.github.io/math/ (just google for "McNinch Tufts math" if you'd like to find them...)
- I'd like to thank the organizers of this Special Session on Cohomology, Representation Theory, and Lie Theory for the invitation to speak. Bummer we couldn't be together in Mobile.
 - I'm going to talk about Lie theory. The questions considered are relevant for (some types of) representation theory. And cohomology is at least playing a back-story....

Nevertheless, I realize that my talk is not exactly at the barycenter of the topics one might have expected in this session, so thanks for your patience!

2 Reductive groups and certain subgroups

- Let F be a field of characteristic $p \ge 0$, let G be a reductive group over F, and let μ_n be the group scheme of n-th roots of unity, for $n \ge 2$.
- Proposition: If $\phi: \mu_n \to G$ is a homomorphism, then the image of ϕ is contained in a maximal torus of G.
- when $p \mid n$, note that μ_n is not a smooth group scheme. When n = p, the image of ϕ amounts to $X \in \text{Lie}(G)$ with $X^{[p]} = X$.
- There is a natural notion of equivalence for such homomorphisms; we call the equivalence classes " μ -homomorphisms" and denote them as $\phi: \mu \to G$.

3 μ -homomorphisms to a split torus

Proposition: If T is a split torus over F with co-character group $Y = X_*(T)$, there is a bijection $\overline{x} \mapsto \phi_{\overline{x}}$

$$Y \otimes Q/Z = V/Y \rightarrow \{\mu\text{-homomorphisms } \mu \rightarrow T\}$$

where $x \in V = Y \otimes Q$.

4 sub-systems and sub-groups

- let $\phi : \mu \to G$ be a μ -homomorphism with image in a split torus T, corresponding to the class of $x \in Y \otimes \mathbb{Q} = V$ in V/Y.
- the centralizer $C_G^0(\phi)$ of the image of ϕ is a subsystem subgroup of G
- if G is split and T a maximal split torus, and if Φ denotes the roots of G in $X^*(T)$, the root system of $C^0_G(\phi)$ is given by $\Phi_x = \{ \alpha \in \Phi \mid \langle \alpha, x \rangle \in \mathbf{Z} \}.$
- Φ_x is the root subsystem determined by the Borel-de Siebenthal procedure from the extended Dynkin diagram of G.
- we refer to the reductive subgroups of G that arises as connected centralizers of homomorphisms $\phi: \mu \to G$ as subgroups of type $C(\mu)$.

5 Local fields

- Let K be a local field, by which I mean the field of fractions of a complete DVR \mathcal{A}
- write $k = \mathcal{A}/\pi \mathcal{A}$ for the residue field.
- e.g. \mathcal{A} could be the completion of the ring of integers O_L of a number field L at some non-zero prime ideal \mathfrak{p} .

Then $[K : Q_p] < \infty$ where $pZ = Z \cap \mathfrak{p}$.

- or \mathcal{A} could be the completion of the local ring \mathcal{O}_X where X is an (smooth, geometrically irreducible) algebraic curve over k.

Then $K \simeq \ell((t))$ where $[\ell : k] < \infty$.

• we assume throughout that the char. of the residue field k is p > 0.

6 Reductive groups and splitting fields

- Let G be a connected and reductive group over the local field K.
- can always find a finite, separable extension $\mathbf{K} \subset \mathbf{L}$ such that $G_{\mathbf{L}}$ is split.
- Recall that for a finite separable extension $k \subset \ell$ of the residue field, there is a unique extension called an unramified extension $K \subset L$ for which the "residue field of L" is ℓ and $[L:K] = [\ell:k]$.
- We suppose that $(\diamondsuit) : G$ splits over an unramified extension of K i.e. that the group G_L obtained via base-change is split for a suitable unramified extension K \subset L.

7 Unramified groups

- One says that $(\clubsuit) : G$ is an unramified group over K if there is a reductive group scheme \mathcal{G} over \mathcal{A} for which $G = \mathcal{G}_{K}$.
- Of course, if G is split over K, it is a fundamental fact essentially, the existence theorem for a reductive group scheme over \mathcal{A} corresponding to a given root datum that there is a split reductive "Chevalley group scheme" \mathcal{G} over \mathcal{A} with $G = \mathcal{G}_{K}$.
- Any unramified group splits over an unramified extension i.e. $(\clubsuit) \implies (\diamondsuit)$ but the converse is not true in general.

8 Parahoric group schemes

- The parahoric group schemes attached to G are certain affine, smooth group schemes \mathcal{P} over \mathcal{A} having generic fiber $\mathcal{P}_{\mathrm{K}} = G$.
- We just said that G is unramified over K if there is a reductive group scheme \mathcal{G} over \mathcal{A} with $G = \mathcal{G}_{K}$. Such a group scheme \mathcal{G} is a parahoric group scheme.
- But in general, parahoric group schemes \mathcal{P} are not reductive over \mathcal{A} , even for split G. In particular, the special fiber \mathcal{P}_k need not be a reductive group over the residue field k.

9 Levi factors of the special fiber of a parahoric

Suppose that G splits over an unramified extension of K, and let \mathcal{P} a parahoric attached to G.

. . .

Studied Levi decompositions of \mathcal{P}_k in (McNinch 2010), (McNinch 2014), (McNinch 2020).

. . .

Theorem (McNinch 2020) There is a reductive subgroup scheme $\mathcal{M} \subset \mathcal{P}$ such that:

a. \mathcal{M}_{K} is a reductive subgroup of G of type $C(\mu)$, and

b. \mathcal{M}_k is a Levi factor of the special fiber \mathcal{P}_k .

. . .

Remarks:

- note that $R_u \mathcal{P}_k$ is defined and split over k, even if k is imperfect. (Thus \mathcal{P}_k has a Levi decomposition over k).
- parahorics are determined up to $G(\mathbf{K})$ -conjugacy by $x \in V = Y \otimes \mathbf{Q}$, and $\mathcal{M}_{\mathbf{K}}$ is the centralizer of $\phi_{\overline{x}}$. Here $Y = X_*(S)$ for a max'l split torus S in G.

10 Main result on nilpotent elements

- Let G be a reductive group over the local field K, and suppose that G splits over an unramified extension.
- Write p for the char. of the residue field k of K, and s'pose p > 2h 2 where h = h(G) is the Coxeter number of G (i.e. the sup of the Coxeter numbers of simple components of $G_{\overline{K}}$.)
- Let $X \in \text{Lie}(G)$ be a nilpotent element.

. . .

Theorem: (McNinch 2021) There is a K-subgroup $M \subset G$ such that:

- a. M is a reductive subgp of type $C(\mu)$ containing a maximal K-torus of G which is unramified.
- b. M is an unramified reductive group over K
- c. $X \in \text{Lie}(M) \subset \text{Lie}(G)$ and X is geometrically distinguished for M.

11 Primary tool

- let G be reductive over K, suppose that G splits over unramif. ext, and let \mathcal{P} be a parahoric for G.
- Choose reductive subgroup scheme $\mathcal{M} \subset \mathcal{P}$ as in earlier Theorem thus \mathcal{M}_k is a Levi factor of \mathcal{P}_k .
- Suppose that p = char(k) > 2h 2 as before.

. . .

Theorem: (McNinch 2021) Let $X_0 \in \text{Lie}(\mathcal{P}_k/R_u\mathcal{P}_k) = \text{Lie}(\mathcal{M}_k)$ be nilpotent.

- a. there is a nilpotent section $\mathcal{X} \in \text{Lie}(\mathcal{M})$ lifting X_0 which is balanced for \mathcal{M} i.e. $C_{\mathcal{M}_k}(\mathcal{X}_k = X_0)$ and $C_{\mathcal{M}_K}(\mathcal{X}_K)$ are smooth of the same dimension.
- b. Moreover, \mathcal{X} is balanced for \mathcal{P} i.e. the centralizers $C_{\mathcal{P}_{\mathbf{k}}}(\mathcal{X}_{\mathbf{k}})$ and $C_{\mathcal{P}_{\mathbf{K}}}(\mathcal{X}_{\mathbf{K}})$ are smooth of the same dimension.

. . .

• I view this as an alternative version of the lifting Theorem of (DeBacker 2002).

Remarks:

- The Main Theorem above is deduced from the Primary Tool in part via the observation that any nilpotent X may be placed in $\text{Lie}(\mathcal{M}) \subset \text{Lie}(\mathcal{P})$ for some parahoric \mathcal{P} .
- in order to control e.g. the dimensions of the centralizers of \mathcal{X}_k and \mathcal{X}_K , we actually place \mathcal{X} in the image of an \mathcal{A} -homomorphism $\mathrm{SL}_{2/\mathcal{A}} \to \mathcal{M}$ and use the representation theory of SL_2 (which is well-behaved since p > 2h 2).

The techniques used for this construction build on earlier work of McNinch (2005) on optimal SL_2 -homomorphisms.

Bibliography

- DeBacker, Stephen. 2002. "Parametrizing Nilpotent Orbits via Bruhat-Tits Theory." Annals of Mathematics. Second Series 156 (1): 295–332. https://doi.org/10.2307/3597191.
- McNinch, George. 2005. "Optimal SL(2) Homomorphisms." Commentarii Mathematici Helvetici. A Journal of the Swiss Mathematical Society 80 (2): 391–426. https://doi.org/10.4171/CMH/19.
 - 2010. "Levi Decompositions of a Linear Algebraic Group." Transformation Groups 15 (4): 937–64. https://doi.org/10.1007/s00031-010-9111-8.
 - ——. 2014. "Levi Factors of the Special Fiber of a Parahoric Group Scheme and Tame Ramification." Algebras and Representation Theory 17 (2): 469–79. https://doi.org/10.1007/s10468-013-9404-4.
 - ——. 2020. "Reductive Subgroup Schemes of a Parahoric Group Scheme." Transformation Groups 25 (1): 217–49. https://doi.org/10.1007/s00031-018-9508-3.
 - . 2021. "Nilpotent Elements and Reductive Subgroups over a Local Field." Algebras and Representation Theory 24: 1479–1522. https://doi.org/10.1007/s10468-020-10000-2.