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ABSTRACT. Let k be an arbitrary field, let G be a (smooth) linear algebraic group over k, and let U be a vector
group over k on which G acts by automorphisms of algebraic groups. The action of G on U is said to be linear if
there is a G-equivariant isomorphism of algebraic groups U ' Lie(U).

Suppose that G is connected and that the unipotent radical of G is defined over k. If the G-module Lie(U) is
simple, we show that the action of G on U is linear. If G acts by automorphisms on a connected, split unipotent
group U, we deduce that U has a filtration by G-invariant closed subgroups for which the successive factors are
vector groups with a linear action of G. When G is connected and the unipotent radical of G is defined and split
over k, this verifies an assumption made in earlier work of the author on the existence of Levi factors.

On the other hand, for any field k of positive characteristic we show that if the category of representations of G
is not semisimple, there is an action of G on a suitable vector group U which is not linear.
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1. INTRODUCTION

Let k be a field, and let G denote a linear algebraic group over k; otherwise said, G is a smooth affine
group scheme of finite type over k. A vector group U is a linear algebraic group (over k) isomorphic to the
product of (finitely many) copies of the additive group Ga.

In this paper, we are interested the action of G by algebraic group automorphisms on a vector group U.
If the linear algebraic group G acts on any linear algebraic group H by algebraic group automorphisms, the
induced action of G on the Lie algebra of H makes Lie(H) a G-module. We say that the action of G on U is
linear if there is a G-equivariant isomorphism of algebraic groups U ' Lie(U) 1.

If k has characteristic 0, view U as a closed subgroup of GL(V) for some faithful finite dimensional U-
module V. Then every vector in Lie(U) is a nilpotent endomorphism of V, and the exponential mapping
X 7→ exp(X) defines a G-equivariant isomorphism of algebraic groups Lie(U)a

∼−→ U. On the other hand,
if k has characteristic p > 0, in §5, we give examples of non-linear actions of G whenever there are G-
modules which are not completely reducible (in particular, for semisimple groups G). Thus, our results are
only interesting when k has characteristic p > 0, which we assume from now on.

Our main result gives a sufficient condition for linearity of the action of G on U which holds under some
hypothesis which we now discuss.

Date: September 22, 2013.
Research of McNinch supported in part by the US NSA award H98230-08-1-0110.
1A finite dimensional k-vector space V may be viewed as a linear algebraic group – in fact, a vector group – in a natural way. In

what follows, we will write Va when we view V as an algebraic group. With this notation, the action of G on the vector group U is
linear if there is a G-equivariant isomorphism U ' Lie(U)a of algebraic groups.
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1.1. Assumptions on G. When the ground field k is imperfect, the geometric unipotent radical of G – i.e.
the unipotent radical of G/kalg

– may not arise by base-change from any subgroup of G – see e.g. [CGP
10, Example 1.1.3]. We are going to sidestep this issue here. Consider the conditions

(R) there is a subgroup R ⊂ G such that R/kalg
is the unipotent radical of G/kalg

, and
(RS) Condition (R) holds and R is split over k.

Recall that a connected unipotent group U is split provided that there is a filtration

U = U0 ⊃ U1 ⊃ · · · ⊃ Ur = 1

by closed normal subgroups for which each subquotient Ui/Ui+1 is a vector group. When k is imperfect,
there are so-called wound unipotent groups which are not split – see e.g. [CGP 10, Example B.2.3] or Example
(2.2.4) below.

If (R) holds, we refer to the group R ⊂ G as the unipotent radical of G. In the language used in [Sp 98],
condition (R) means that the unipotent radical of G is defined over k, and (RS) means that the unipotent
radical of G is defined and split over k. Observe that conditions (R) and (RS) are automatic for any G
when k is perfect; see e.g. [Sp 98, 14.4.5(v) and 14.3.10]. If (R) holds, the quotient G/R is a (not necessarily
connected) reductive algebraic group over k.

1.2. The main result: a condition for linearity. If the linear algebraic group G acts by group automor-
phisms on the vector group U, then Lie(U) is a G-module and hence a module for the identity component
G0 of G. The following condition for the linearity of the action of G on U will be obtained in Theorem (3.2.6):

Theorem A. Assume that condition (R) holds for the linear algebraic group G, and that G acts by group automor-
phisms on the vector group U. If Lie(U) is a simple module for the identity component G0 of G, then the action of G
on U is linear.

In the hypothesis of Theorem A, observe that we do not require the G0-module Lie(U) to remain simple
after scalar extension.

1.3. Consequences: actions on connected, split, unipotent groups. Let U be a split unipotent group on
which G acts by group automorphisms. We say that the action of G on U is linearly filtered if there is a
filtration of U

U = U0 ⊃ U1 ⊃ · · · ⊃ Ur ⊃ Ur+1 = 0
by G-invariant closed subgroups Ui such that for each 0 ≤ i ≤ r, Ui/Ui+1 is a vector group on which G acts
linearly.

As an application of Theorem A we obtain the following result; see Theorem (4.3.1) for the proof.

Theorem B. Suppose that the connected linear algebraic group G acts by group automorphisms on the connected,
split, unipotent group U. If condition (R) holds for G, then the action of G on U is linearly filtered.

For a group G satisfying condition (R), we wish to apply the preceding result to the unipotent radical R
of G. If the conclusion of Theorem B is valid for the action of G on R, then R is automatically split unipotent.
Thus we are led to suppose at the outset that R is split unipotent; i.e. we require that (RS) holds for G.

The preceding Theorem then shows that the action of G on R is linearly filtered when G is connected. The
main results of the author’s earlier investigation of the existence and conjugacy of Levi factors of G made
in [Mc 10], were proved under an assumption formulated as “condition (L)” of [Mc 10, §2.3]. Condition (L)
holds provided the unipotent radical R of G possesses a filtration by closed subgroups Ri which are normal
in G and for which each quotient group Ri/Ri+1 is a vector group with a linear action of G/R.

According to Theorem B, the action of G on the connected, split unipotent group R is linearly filtered.
Thus, [Mc 10](2.2.3) yields the following result:

Theorem C. Assume that the linear algebraic group G is connected and satisfies condition (RS). Then condition (L)
of [Mc 10, (2.2.3)] holds for G.

In [Mc 10, §6.3], condition (L) was verified directly for the special fiber of a parahoric group scheme
attached to a split reductive group over a local field. Since the special fiber of a parahoric group scheme is
connected, Theorem C gives a simpler proof that (L) holds in this case.

Write π : G → G/R for the natural mapping. A Levi factor of G is a k-subgroup M ⊂ G for which the
restriction π|M : M → G/R is an isomorphism of algebraic groups. In view of Theorem C, we deduce the
following result(s) from [Mc 10, Theorem 5.1 and 5.2]:
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Corollary D. Assume that the linear algebraic group G is connected and satisfies condition (RS). Choose a filtration

R = R0 ⊃ R1 ⊃ · · · ⊃ Rr ⊃ Rr+1 = 0

of R where each Ri is normal in G and each quotient Ri/Ri+1 is a vector group with a linear action of G/R.

(i) Suppose that H2(G/R, Lie(Ri/Ri+1)) = 0 for each i. Then G has a Levi factor.
(ii) Suppose that G has a Levi factor and that H1(G/R, Lie(Ri/Ri+1)) = 0 for each i. Then any two Levi factors of

G are conjugate by an element of R(k).

Remark (1.3.1). At least for connected G, Theorem B also simplifies the hypotheses of other results in [Mc
10]; see e.g. the Theorems in §5.4 and §5.5 of that paper.

We conclude this introduction by mentioning some questions which we have left unanswered.

Question E. Does the conclusion of Theorem A hold when either:

(i) (R) fails to hold, or
(ii) when Lie(U) is a simple G-module of dimension > 1, but the identity component of G acts trivially on Lie(U)?

The author is unaware of examples demonstrating a negative answer in either case (i) or (ii).
Finally, we point out that during the initial preparation of this manuscript, the author learned that David

Stewart recently obtained a result similar to Theorem B; see [St 13, Theorem 3.3.5]. Stewart assumes that G
is a connected linear algebraic group G over an algebraically closed field k; he shows (in the language used
above) that if G acts on a connected unipotent group U, then the action of G on U is linearly filtered.

1.4. Notations, assumptions, and conventions. We write ksep for a separable closure of k, and kalg for an
algebraic closure of ksep and hence of k. If ` ⊃ k is a field extension, we write G/` for the linear algebraic
group over ` obtained by extension of scalars.

When we speak of a closed subgroup of an algebraic group G, we mean a closed subgroup scheme
over k (unless said otherwise, we only consider smooth group schemes); thus the subgroup is required
to be “defined over k” in the language of [Sp 98] or [Bo 91]. Similar remarks apply to homomorphisms
between linear algebraic groups. We occasionally use the terminology “k-subgroup” or “k-homomorphism”
for emphasis.

An action of the algebraic group G on an algebraic group H is always understood to be given by a
morphism

α : G× H → H

of varieties; since G and H are smooth group schemes, α will determine an action on H by algebraic group
automorphisms provided that the morphism (h 7→ α(g, h)) : H/kalg

→ H/kalg
is a homomorphism of alge-

braic groups for each g ∈ G(kalg).
By a G-module V, we mean a co-module V for the Hopf algebra k[G], where k[G] is the coordinate algebra

of G. When V is finite dimensional as a k-vector space, it follows that the action of G on V is determined
by a homomorphism of algebraic groups G → GL(V) defined over k. In general, since the action of G is
determined by a co-module map ∆ : V → k[G]⊗V [Jan 03, I.2.8], one knows that the action of G on V is locally
finite: any v ∈ V is contained in a finite dimensional G-submodule of V.

For a G-module V and a field extension ` ⊃ k, write V/` = V ⊗k ` for the G/`-module obtained by
extension of scalars.

We write V∨ for the dual vector space of the finite dimensional vector space V; if V is a G-module, V∨ is
again a G-module in a natural way.

Suppose that V1 and V2 are algebraic groups on which G acts by group automorphisms, and write αi :
G× Vi → Vi for the morphisms defining the actions. A homomorphism of algebraic groups f : V1 → V2 is
G-equivariant provided that

(∗) f ◦ α1 = α2 ◦ (1G × f ).

Since the group scheme G and the Vi are smooth, it suffices to check that (∗) holds on kalg-points of G×V1,
where kalg is an algebraic closure of k. If the Vi are G-modules and f is a linear mapping, we recover the
notion of a G-module homomorphism.
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2. REPRESENTATIONS AND p-LINEAR MAPS

In this section, we collect some results about the representations of a linear algebraic group G to be used
in the sequel. As pointed out in the introduction, our applications here involve questions which are mainly
of interest only in positive characteristic. Thus, we suppose throughout that the characteristic of k is p > 0,
though of course with proper reformulation many of the results remain true in characteristic zero.

We collect in §2.1 some results on extension of scalars and complete reducibility of modules for a linear
algebraic group. We then discuss in §2.2 the notion of p-linear mappings between vector groups with a
chosen linear structure. The main result of §2.2 is Theorem (2.2.7) concerning the behavior of irreducibility
of a G-module under p-linear isogenies. Finally, in §2.3 we show by example when k is imperfect that a
G-equivariant p-linear isogeny between G-modules need not preserve irreducibility.

The reader mainly interested in the case of algebraically closed k can skip the results in §2.1 and §2.3. The
proof of Theorem (2.2.7) is also much simpler in case k is perfect (in particular, when k = kalg).

2.1. Extension of scalars and completely reducible representations.

Proposition (2.1.1). Let V and W be finite dimensional non-zero G-modules.
(a) If ` is any field extension of k and if HomG/`(V/`, W/`) 6= 0, then HomG(V, W) 6= 0.
(b) If V/kalg

and W/kalg
are isomorphic G/kalg

-modules, then V and W are isomorphic G-modules.

Proof. Assertion (a) follows from the observation HomG(V, W) ⊗k ` = HomG/`(V/`, W/`) found in [Jan
03, I.2.10(7)] (since ` is a flat k-algebra).

For (b), we view the vector space H = HomG(V, W) as an algebraic variety over k isomorphic to affine
space An for some n. The subvariety of G-isomorphisms I = IsoG(V, W) ⊂ H is open; this variety has
positive dimension by our assumption. Assertion (b) will follow if we argue that the set I(k) of k-points is
non-empty. When k is infinite, this follows from the density of the k-points H(k) in H. Now suppose that k
is finite, and consider the group scheme A = AutG(V) = EndG(V)×. Since A is an open subscheme of the
affine space EndG(V), it is a smooth and connected group scheme over k and hence “is” a connected linear
algebraic group over k.

Evidently, I is a torsor over A. According to the Lang-Steinberg theorem, I has a k-rational point, and the
assertion follows. �

Proposition (2.1.2). Let V be a finite dimensional G-module. There is a k-subalgebra A ⊂ Endk(V) with the
following properties:
(a) For every field extension ` of k and every `-subspace W ⊂ V/`, W is a G/`-submodule of V/` if and only if W is

an A/`-submodule of V/`, where A/` = A⊗k `.
(b) The simple A-modules are precisely the composition factors of V (as an A-module, or equivalently as a G-module).
(c) If S and T are composition factors of V, then HomA(S, T) = HomG(S, T).
(d) If (R) holds for G and if S is a simple A-module, then the division algebra EndA(S) = EndG(S) has a splitting

field which is a finite separable extension of k. In particular, A/ rad(A) is a separable semisimple k-algebra, where
rad(A) denotes the Jacobson radical of A.

Proof. Write ρ : G → GL(V) for the homomorphism of algebraic groups which determines the action of
G on V. Let ksep be a separable closure of k, and write A1(V) ⊂ Endksep(V/ksep) for the ksep-subalgebra
generated by the image ρ(G(ksep)).

Write Γ = Gal(ksep/k) for the absolute Galois group of k. Since ρ and G are defined over k, the subalgebra
A1 is stable under the natural Γ action on Endksep(V/ksep). Put A(V) = A1(V)Γ. It follows from Speiser’s
Lemma [GS 06, Lemma 2.3.8] that the natural mapping A(V)⊗k ksep → A1(V) is an isomorphism. We now
argue that A = A(V) ⊂ Endk(V) = Endksep(V/ksep)

Γ has the required properties.
(a) follows from the fact – see [Sp 98, Theorem 11.2.7] – that G(ksep) is dense in G. . Indeed, let ` ⊃ k

be a field extension, let W ⊂ V/` be a subspace, and choose an algebraically closed field L containing ` and
ksep. Then W is a G/`-submodule of V/` if and only if W/L is stable under the action of ρ(g) for g ∈ G(L).
Since G(ksep) is dense in G, this last condition is equivalent to the stability of W/L under the action of each
element of A1. Since A contains a ksep-basis of A1, conclude that W is a G/`-submodule if and only if W is
invariant under the action of each element of A, and (a) follows.

Since V is a faithful A-module, (b) follows e.g. from [CR 81, 3.30].
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For (c), choose a composition series 0 = C0 ⊂ C1 ⊂ Cr = V for V as G-module, and write W =⊕r
i=1 Ci/Ci+1 for the semisimplification of the G-module V. The morphism G → GL(V) has image in the

parabolic subgroup P ⊂ GL(V) which is the stabilizer of the flag C•, and GL(W) identifies naturally with
the reductive quotient of P. This leads to a natural surjective algebra homomorphism A(V)→ A(W) whose
kernel is the Jacobson radical of A(V). Thus, the proof of (c) is reduced to the case of a semisimple G-module
V. After replacing V by a suitable quotient, we may further suppose that each simple factor of V occurs with
multiplicity one. Now, the density of G(ksep) shows that

EndG(V) = {X ∈ EndK(V) | (X⊗ 1L)g = g(X⊗ 1L) ∀g ∈ G(ksep)} = EndA(V)

and since the isotypic components of the G-module V are simple, assertion (c) is immediate.
For (d), write R for the unipotent radical of G. Then the fixed points SR form a G-submodule of S. Since

R is unipotent, SR 6= 0. Since S is simple, conclude that S = SR; i.e. R acts trivially on S. Replacing G by
G/R, we may suppose that G is reductive. A result of Tits [Ti 71, Theorem 7.2] now shows that S/ksep is a
semisimple G/ksep -module. On the other hand, it follows from [Sp 98, 13.1.1] that G/ksep is a split reductive
group. According to [Jan 03, II.2], the endomorphism algebra of each simple G/ksep -modules is ksep; thus
Endksep(S) is a split semisimple algebra, and (d) follows. �

Proposition (2.1.3). Assume that (R) holds for G, and let V be a G-module. The following are equivalent:
(a) V is a semisimple G-module
(b) V/` = V ⊗k ` is a semisimple G/`-module for some field extension ` ⊃ k
(c) V/` is a semisimple G/`-module for every field extension ` ⊃ k

Proof. According to [Jan 03, I.2.13(3)], all G-modules are locally finite, so V is the sum of its finite dimen-
sional G-submodules. In particular, V is semisimple if and only if each finite dimensional G-submodule is
semisimple; thus we suppose V to be finite dimensional.

Let A be the algebra determined by the G-module V as in Proposition (2.1.2). For any field extension ` of
k, that proposition shows that V/` is a semisimple G/`-module if and only if V/` is a semisimple A/`-module;
in turn, [CR 81, Prop 3.31] shows that V/` is a semisimple A/`-module if and only if A/` is a semisimple
`-algebra.

Now the result follows from [Re 03, Theorem 7.18]. �

For a G-module V, write socG(V) for the socle of V; namely, socG(V) is the largest semisimple submodule
of V. Equivalently, socG(V) is the sum of all simple G-submodules of V.

Proposition (2.1.4). (a) Let A be a finite dimensional k-algebra, and suppose for each simple A-module L that the
division algebra EndA(L) is split by a finite separable field extension of k. For any field extension ` of k and any
A-module W, the image of socA(W)/` in W/` coincides with socA/`(W/`).

(b) Assume that (R) holds for G, and let V be a G-module. For any field extension k ⊂ `, the image of socG(V)/` in
V/` coincides with socG/`(V/`).

Proof. Note first that (b) is a consequence of (a). Indeed, since the G-module V is locally finite, it is evidently
sufficient to prove the result for finite dimensional V. In that case, let A be the finite dimensional algebra of
Proposition (2.1.2) associated to G and V. Since (R) holds for G, the endomorphism algebra of each simple
A-module has a finite separable splitting field. Moreover, Proposition (2.1.2) shows that the G-socle socG(V)
coincides with the A-socle socA(V), and the analogous statement holds after scalar extension. It is now clear
that (a) implies (b).

For the proof of (a), write rad(A) for the Jacobson radical of A. The assumptions show that A/ rad(A) is
a separable semisimple algebra. Arguing as in [Re 03, Cor. 7.17], one sees that the image of rad(A)/` in A/`
coincides with rad(A/`).

Write S = socA(W) and T = socA/`(W/`). The socle S is equal to the sum of the images of all A-
homomorphisms

φ : A/ rad(A)→W,
and the socle T is equal to the sum of the images of all A/`-homomorphisms

ψ : (A/`)/ rad(A/`)→W/`,

Since (A/`)/ rad(A/`) ' (A/ rad(A))/`, the equality S/` = T follows at once. �



6 GEORGE J. MCNINCH

2.2. p-linear maps. Let V and W be finite dimensional k-vector spaces. We write Va and Wa for the linear
algebraic groups (vector groups) determined by V and W; thus Va and Wa are vector groups.

If r ≥ 0 is an integer, an additive homomorphism f : V →W will be said to be pr-linear if f (tv) = tpr
f (v)

holds for every t ∈ k and v ∈ V. If f : Va → Wa is a homomorphism of algebraic groups and r > 0 an
integer, we say that f is pr-linear if fΛ(tv) = tpr

fΛ(v) for all commutative k-algebras Λ, all t ∈ Λ, and all
v ∈ Va(Λ) = V ⊗k Λ.

Lemma (2.2.1). The assignment f 7→ fk determines a bijection from the collection of all pr-linear homomorphisms
f : Va →Wa to the collection of all pr-linear maps g : V →W.

Proof. Indeed, a pr-linear homomorphism f : Va → Wa of algebraic groups determines a mapping on k-
points f̃ = fk : Va(k) = V → Wa(k) = W with the required property. On the other hand, given a pr-linear
mapping g : V → W and a commutative k-algebra Λ, define fΛ : V(Λ) = V ⊗k Λ → W(Λ) = W ⊗k Λ by
the rule

fΛ(v⊗ β) = g(v)⊗ βpr
for v ∈ V and β ∈ Λ;

the collection of mappings fΛ determines the unique pr-linear homomorphism f : Va →Wa with fk = g. �

Proposition (2.2.2). Let f : Va →Wa be a pr-linear homomorphism of vector groups. Write f̃ = fk for the map

f̃ = fk : Va(k) = V →Wa(k) = W

induced by f on k-points.
(a) There is a unique k-vector subspace X ⊂W such that the image of f lies in the subgroup Xa ⊂Wa and for which

f : Va → Xa is a surjective pr-linear morphism of vector groups. Moreover, f` : Va(`) → Xa(`) is surjective for
any perfect field ` containing k.

(b) ker f is a connected group scheme over k, and f̃ is injective if and only if ker f is finite and infinitesimal.

Proof. For (a), let I ⊂ W be the image f̃ (V) = f̃ (Va(k)). Since f̃ is pr-linear, I is a kpr
-linear subspace of W.

Set X = kI ⊂W; it is clear by construction that f factors through the inclusion Xa ⊂Wa.
For a field extension ` ⊃ k, the pr-linearity of f shows that the image f`(Va(`)) coincides with `pr

I. If ` is
perfect, `pr

I = `I = `X = X⊗k ` = Xa(`) so f` : Va(`)→ Xa(`) is surjective when ` is perfect.
Since kalg is perfect,

fkalg
: Va(kalg)→ Xa(kalg)

is surjective. Hence the subset f (Va) inside Xa contains all kalg-points. But f (Va) is a closed subset of Xa, so
by containment of all kalg-points, it must coincide with Xa.

The uniqueness of X follows at once from the fact that Xa(kalg) is uniquely determined as the image of
fkalg

.

For (b), let K ⊂ V = Va(k) be the kernel of f̃ . The pr-linearity of f̃ shows that K is a k-linear subspace of V.
Let ` be any field containing k. The kernel of the mapping f` induced by f on `-points evidently identifies
with K ⊗k ` ⊂ V ⊗k ` = Va(`). It follows that the group of `-points (ker f )(`) is equal to K ⊗k `. Now [Jan
03, I.8.2] shows that K = 0 if and only if ker f is a finite, infinitesimal group scheme.

In general, Ka is a subgroup scheme of ker f , so f induces a pr-linear mapping f1 : Va/Ka → Xa. Now
f̃1 is injective, so the group scheme ker f1 is finite and infinitesimal. In particular, ker f1 is connected. The
connectedness of ker f now follows since (ker f )/Ka ' ker f1. �

Proposition (2.2.3). For a pr-linear homomorphism of vector groups f : Va →Wa, the following are equivalent:
(i) f is an isogeny.

(ii) f` : Va(`)→Wa(`) is a bijective group homomorphism for some perfect field ` containing k.
(iii) f` : Va(`)→Wa(`) is a bijective group homomorphism for every perfect field ` containing k.

Proof. Suppose (i) holds and let ` be a perfect field containing k. By hypothesis, ker f is a finite infinitesimal
group scheme, and f is surjective. The condition on ker f together with (2.2.2)(b) shows that f` is injective.
Since f is surjective, (2.2.2)(a) shows (in the notation of that Proposition) that W = X and hence that f` is
surjective; thus, (iii) holds.

The implication “(iii) implies (ii)” is clear. Now suppose (ii) to hold for the perfect field extension ` of
k. Since f` is a injective, (2.2.2)(b) shows that ker f is a finite infinitesimal group scheme. It only remains to
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see that f is surjective. In the notation of (2.2.2)(a), it is sufficient to prove that W = X. By hypothesis, f` is
surjective; thus (2.2.2)(a) shows that W ⊗k ` = X ⊗k `. It then follows for dimension reasons that W = X as
required. Thus (i) holds. �

Example (2.2.4). There are (non pr-linear) homomorphisms f : Va → Wa for which the map fk on k-points
has finite kernel, even though f is not an isogeny. For example, let k = `(t) be the field of rational functions
over a field ` of characteristic p, let V = k2, and consider the homomorphism f : Va → Ga given by
f (y, z) = yp − y − tzp. Then the kernel of fk consists in the elements (a, 0) ∈ V with a ∈ Fp ⊂ k, hence
contains p elements. But the kernel of f : Va → Ga is a 1-dimensional wound unipotent group – i.e. a
non-split k-form of the additive group Ga – see e.g. [Mc 04, Remark 32] for more details.

Proposition (2.2.5). Let V, W1 and W2 be G-modules, and let fi : V → Wi be G-equivariant pr-linear isogenies for
i = 1, 2.
(a) If k is perfect, there is a unique isomorphism of G-modules φ : W1 →W2 with the property that φ ◦ f1 = f2.
(b) For any k, W1 'W2 as G-modules.

Proof. When k is perfect, Proposition (2.2.3) implies that the fi are bijective (on k-points), and in that case φ

is given by f2 ◦ f1
−1; this proves (a).

For general k, (a) implies that W1 and W2 are isomorphic after extending scalars to some perfect field
containing k. Then (b) follows from Proposition (2.1.1). �

Remark (2.2.6). Let V and W are finite dimensional G-modules and let f : Va → Wa be a G-equivariant and
pr-linear morphism of vector groups.
(a) The vector subspace X ⊂W of (2.2.2)(a) is a G-submodule of W.
Now suppose that k is a perfect field.
(b) It follows from Proposition (2.2.3) that the assignment f 7→ fk is a bijection from the collection of pr-

linear isogenies f : Va → Wa to the collection of bijective pr-linear homomorphisms g : V → W; we say
that fk : V →W is G-equivariant provided that f : Va →Wa is G-equivariant.

(c) The mapping X 7→ f (X) is an inclusion-preserving bijection from the set of G-submodules of V to the
set of G-submodules of W. In particular, V is a simple, respectively semisimple, G-module if and only
if W is a simple, respectively semisimple, G-module.

(d) Suppose that k is a perfect field. For each r ≥ 0, the Frobenius twist V(r) of V is constructed in [Jan
03, I.9.10]. From the construction of V(r), one has a pr-linear G-equivariant bijection F : V → V(r). If the
G-equivariant pr-linear homomorphism fk : V →W is bijective, then Proposition (2.2.5) yields a unique
isomorphism of G-modules φ : V(r) ∼−→ W such that φ ◦ F = fk.

Recall that a G-module V is absolutely simple if V/` is a simple G/`-module for every field extension ` of k;
in view of Proposition (2.1.2), V is absolutely simple if and only if V/kalg

is a simple G/kalg
-module. We can

now give the following crucial result:

Theorem (2.2.7). Let G be a linear algebraic group for which (R) holds, let V and W be finite dimensional G-modules,
and let f : Va →Wa be a G-equivariant, pr-linear isogeny. If V is a simple G-module, then W is a semisimple, isotypic
G-module. If k is perfect or if V is absolutely simple, then W is a simple G-module.

Proof. We first argue that W is a semisimple G module. Since (R) holds for G, Proposition (2.1.3) shows that
the simple module V is semisimple after extending scalars to an algebraic closure. When k is algebraically
closed, Remark (2.2.6)(c) shows that fk determines a bijection between G-submodules of V and those of W;
thus W is semisimple after extending scalars to an algebraic closure. Now the semisimplicity of W as a G
module follows for any k from another application of Proposition (2.1.3).

If k is perfect, Remark (2.2.6)(c) shows that W is a simple G-module. Now suppose that V is absolutely
simple, so that V remains simple after extending scalars to a perfect field `. Then W is simple after scalar
extension to `, hence W is already a simple G module (over k).

It remains to establish that the semisimple G-module W is isotypic when k is arbitrary. We may find
a finite Galois extension ` ⊃ k for which V/` is isomorphic to a direct sum of absolutely irreducible G/`-
modules. Now write

V/` '
e⊕

i=1

Vi and W =
f⊕

j=1

Wj
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where the Vi are the isotypic components of V/` as a G/`-module, and the Wj are the isotypic components
of W as a G-module.

For a simple G/`-submodule S ⊂ V/`, it follows from Remark (2.2.6)(a) and (c) that there is a G-submodule
S′ ⊂ W/` such that the restriction of f/` to S is a G/`-equivariant pr-linear isogeny Sa → S′a. Since S is an
absolutely simple G/`-module, we have already established that S′ is also an absolutely simple G/`-module.
In particular, S′ ⊂ Wj0/` for some j0. Since HomG(Ws, Wt) = 0 if s 6= t, it follows from Proposition (2.1.1)
that Ws/` and Wt/` have no isomorphic composition factors for any field extension `. Thus j0 is uniquely
determined by S.

This reasoning shows that each isotypic component Vi of V/` is mapped to the G/`-submodule Wj(i)/`
for some 1 ≤ j(i) ≤ f . Consider the G/`-submodule V′ ⊂ V/` given by the sum of all those Vi for which
j(i) = 1. Since W1 is invariant under the action of Γ, also V′ is invariant under the action of Γ. By Speiser’s
Lemma [GS 06, Lemma 2.3.8] the natural mapping (V′)Γ ⊗k `

∼−→ V′ is an isomorphism. Thus (V′)Γ is a
G-submodule of V. Since V is a simple G-module, conclude that V = (V′)Γ and hence V/` = V′. Since f is
surjective, we find that W = W1, so indeed W is an isotypic G-module. �

2.3. Reducible images of simple modules. In this section, we are going to show by example that the con-
clusion of Theorem (2.2.7) can’t be improved. More precisely, we are going to prove the following result:

(2.3.1). There exists an imperfect field k, a linear algebraic group G over k, G-modules L, M, and a G-equivariant
p-linear isogeny f : La → Ma with L a simple G-module, and M a (semisimple and isotypic but) reducible G-module.

Remark (2.3.2). The referee pointed out the following example. Suppose that k is algebraically closed, that
G is connected and reductive, and write G1 for the first Frobenius kernel of G. Let L be a non-trivial restricted
simple G-module, so that L is also simple as a module for G1 [Jan 03, II.3.15]. Let L(1) be the first Frobenius
twist of L, and let F : L → L(1) be the G-equivariant p-linear bijection as in Remark (2.2.6)(d). Then G1 acts
trivially on L(1) so L(1) is a (semisimple and isotypic but) reducible G1-module; thus the conclusion of (2.3.1)
holds for the (non-smooth) group scheme G1.

Proof of (2.3.1) for a linear algebraic group over k: Let D be a central division algebra over k, and suppose that
the order of the class of D in the Brauer group Br(k) is p. Such division algebras exists. For example, let
k = Fp((t)) be the field of formal Laurent series over the finite field Fp with p elements, and let D be the
central k-division algebra having Hasse invariant 1/p + Z ∈ Q/Z; see e.g. [GS 06, 6.3.9 and 6.3.10].

In general, it follows from [Jac 96, Theorem 4.1.2] together with the assumption on the order of the class
of D in Br(k) that

E = k⊗σ,k D ' Matp×p(k)

is a split simple k algebra, where the tensor product is taken with respect to the Frobenius mapping σ : k→ k
given by σ(x) = xp.

Lemma (2.3.3). Suppose that L is a simple G-module, and that EndG(L) ' D. There is a G-module M and a
G-equivariant p-linear isogeny φ : L→ M for which M is not simple.

Proof. Consider the G-module M = k⊗σ,k L together with the mapping φ : L → M given by φ(x) = 1⊗ x.
Then φ determines a G-equivariant p-linear isogeny φ : La → Ma by Proposition (2.2.3).

We may view M as an E = k ⊗σ,k D-module in a natural way, and the action of E commutes with the
action of G. Since E contains zero divisors, Schur’s Lemma shows that M is a reducible G-module. �

In view of Lemma (2.3.3), the proof of (2.3.1) will be completed by the following lemma.

Lemma (2.3.4). Let D be a finite dimensional central division algebra over k. Then there is a connected and reductive
algebraic group G over k and a simple G-module L with EndG(L) ' D.

Proof. Let E = Dopp be the opposite algebra to the division algebra D, and let G = GL1,E be the unit group
scheme of E; thus G is a reductive algebraic group over k which is a k-form of the group GLp. Moreover, the
action of E on itself by left multiplication makes L = E into a simple G-module for which EndG(L) ' D. �

Remark (2.3.5). If the Brauer group Br(k) contains an element of order p, then k is imperfect; this follows
from [Jac 96, Theorem 4.1.8].
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3. ADDITIVE FUNCTIONS ON A VECTOR GROUP

Throughout this section, G denotes a linear algebraic group over k for which condition (R) holds, and U
denotes a vector group over k on which G acts by automorphisms of algebraic groups.

3.1. The action of an algebraic group on a vector group. The action of the linear algebraic group G on the
vector group U determines a linear representation of G on the Lie algebra Lie(U).

Definition (3.1.1). The action of G on U is said to be linear if there is a G-equivariant isomorphism of algebraic
groups U ' Lie(U)a.

An important example is given by a finite dimensional G-module V, then G acts on the vector group Va,
and that action is linear.

Remark (3.1.2). (a) Suppose that the action of G on the vector group U is linear. One might prefer to say
instead that the choice of G-equivariant isomorphism U ' Lie(U)a determines a linear structure on U
fixed by G; in general, there are many such choices.

(b) There are vector groups with non-linear G actions – i.e. for which there is no linear structure on U fixed
by G; we give examples in §5 below.

Consider the ring of k-endomorphisms of Ga; as in [Sp 98, 3.3.1], this ring may be canonically identified
with the “twisted polynomial ring”

R = Rk = k〈τ〉
where τ : k → k is the Frobenius endomorphism τ(x) = xp. The ring R has a left k-basis consisting of the
elements τi, i ≥ 0, and we have the commutation formula τa = apτ for a ∈ k.

Following [Sp 98, §3.3], for any linear algebraic group U, we write A (U) for the collection of all ho-
momorphisms of algebraic groups f : U → Ga over k. We view A (U) as a vector subspace of k[U].
Composition of additive functions defines a natural action of the ring R on A (U), making A (U) a (left)
R-module.

For j ≥ 0 we write A j(U) for the R-module Rτ jA (U). We have the following description of the R-
modules A j(U).

Lemma (3.1.3). Let d be the dimension of the vector group U. For j ≥ 0, A j(U) is a free R-module of rank d for

each j ≥ 0. If T1, . . . , Td ∈ A (U) is an R-basis of A (U), then Tpj

1 , . . . , Tpj

d is an R-basis of A j(U).

Proof. Since U ' Gd
a , the description of A (U) follows from [Sp 98, 3.3.5]. Since A j(U) = Rτ jA (U), it is

readily verified that the elements τ jTi = Ti
pj

for 1 ≤ i ≤ d form an R-basis for A j(U). �

According to (3.1.3), for j ≥ 0, A j(U) is spanned as k-vector space by elements f pj
for f ∈ A (U). Since

G acts by algebra automorphisms on k[U], it follows that A j(U) is a G-submodule of A (U).
Write ΩU for the module of k-differentials on U; thus the k[U]-module ΩU is equipped with a derivation

( f 7→ d f ) : k[U] → ΩU as in [Sp 98, §4.2]. Write ΩU(0) = ΩU/m0ΩU for the fiber at the k-point 0 ∈
U(k) (our notation follows that of [Sp 98, §4.3.1]). Here, m0 denotes the maximal ideal of the ring k[U]
corresponding to the k-point 0 of U.

Lemma (3.1.4). (a) The mapping f 7→ d f induces an isomorphism

A (U)/A 1(U)
∼−→ ΩU(0) = ΩU/m0ΩU .

In particular, A (U)/A 1(U) ' Lie(U)∨.
(b) If the group G acts on U, the isomorphism of (a) is G equivariant.

Proof. The first assertion of (a) follows at once from the description of A (U) and A 1(U) found in Lemma
(3.1.3). Now use that ΩU(0) ' m0/m2

0 ' Lie(U)∨; cf. [Sp 98, 4.1.4]. Assertion (b) is immediate from the
definitions. �

Proposition (3.1.5). Let U and V be vector groups and let φ : U → V be a homomorphism of algebraic groups. Upon
restriction to A (V), the comorphism φ∗ : k[V]→ k[U] induces a homomorphism of R-modules

φ∗|A (V) : A (V)→ A (U).

Moreover, φ is an isomorphism of algebraic groups if and only if φ∗|A (V) is an isomorphism of R-modules.
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Proof. A straightforward verification shows that φ∗|A (V) maps A (V) to A (U) and commutes with the
action of the ring R.

We now prove the remaining assertion. If φ : U → V is an isomorphism, then φ∗ : k[V] → k[U] is an
isomorphism of algebras; thus φ∗|A (V) is an isomorphism of R-modules.

Suppose on the other hand that φ∗|A (V) is an isomorphism of R-modules. We argue that the comorphism
φ∗ : k[V] → k[U] is an isomorphism of algebras. Well, since A (U) generates k[U] as k-algebra, evidently
φ∗(k[V]) = k[U] so that φ∗ is onto. By its R-linearity, φ∗|A (V) induces an isomorphism A (V)/A 1(V) →
A (U)/A 1(U); in view of Lemma (3.1.4)(a), it follows that the mapping (ΩV)(0) → (ΩU)(0) induced by
φ is a linear isomorphism; taking duals, this means that the tangent mapping to φ at 0 is an isomorphism.
Thus the morphism φ is dominant [Sp 98, 4.3.6] so that its comorphism φ∗ is injective. This shows that φ∗ –
and hence φ – is an isomorphism, as required. �

Proposition (3.1.6). Let V be a G-module, so that Va is a vector group with an action of G. Given a G-equivariant
homomorphism f : U → Va, the comorphism f ∗ determines by restriction a homomorphism of G-modules

f ∗|V∨ : V∨ → A (U).

This assignment determines a bijection between G-equivariant homomorphisms of algebraic groups U → Va over k
and homomorphisms of G-modules V∨ → A (U).

Proof. The assignment f 7→ f ∗ determines a bijection between the collection of all morphisms U → Va of
k-varieties and the set Homk−alg(k[Va], k[U]). By the universal property of the symmetric algebra k[Va] =

Sym(V∨), the restriction mapping g 7→ g|V∨ determines a bijection Homk−alg(k[Va], k[U])
∼−→ Homk(V∨, k[U]).

Let λ : V∨ → k[U] be k-linear, and write fλ : U → Va for the morphism to which it corresponds under
the above bijections. It is straightforward to see that fλ is a group homomorphism if and only if the image
of λ is contained in A (U), and that fλ is G-equivariant if and only if λ is a G-module homomorphism. The
result follows at once. �

3.2. A condition for linearity. We keep the notation and assumptions of § 3.1. We begin by studying the
filtration

A (U) ⊃ A 1(U) ⊃ A 2(U) ⊃ · · ·
of A (U) by G-submodules.

Proposition (3.2.1). (a)
⋂

i≥1 A i(U) = {0}.
(b) For each i, r ≥ 1, multiplication by τr defines a G-equivariant pr-linear isogeny

(A (U)/A i(U))a → (A r(U)/A i+r(U))a.

Proof. Assertion (a) follows from the evident observation that
⋂

i≥1 Rτi = {0} in R. .
Recall that A (U) is a G- and R- submodule of the coordinate ring k[U]. Left multiplication by τr on k[U]

coincides with the pr-th power mapping f 7→ τr · f = f pr
. Since k[U] is an integral domain, this mapping is

injective. Since the action of G on k[U] preserves the algebra structure, multiplication by τr is G-equivariant.
Now (b) follows from Proposition (2.2.3). �

Proposition (3.2.2). Suppose that V ⊂ A (U) is a G-submodule for which V ∩ A 1(U) = 0. Consider the G-
equivariant homomorphism of algebraic groups φ : U → (V∨)a corresponding via Proposition (3.1.6) to the inclusion
V → A (U).
(a) φ is a separable surjection; i.e. φ is surjective and dφ : Lie(U)→ Lie((V∨)a) = V∨ is surjective.
(b) If A (U) = V +A 1(U), then V∨ ' Lie(U) and dφ is an isomorphism.

Proof. For (a), it suffices to argue that dφ is surjective. Dualizing, it is the same to argue that the mapping

φ∗ : Ω(V∨)a(0)→ ΩU(0)

induced by the comorphism φ∗ on the fibers at zero of the respective modules of differentials is injective.
But Lemma (3.1.4) gives natural identifications

Ω(V∨)a(0) = A ((V∨)a)/A 1((V∨)a) = Lie((V∨)a)
∨ = V and ΩU(0) = A (U)/A 1(U);
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under these identifications, the induced mapping φ∗ : Ω(V∨)a(0)→ ΩU(0) identifies with the composite

V → A (U)→ A (U)/A 1(U),

which is injective by hypothesis.
For (b), we have by hypothesis an isomorphism V ' A (U)/A 1(U) so indeed V∨ ' Lie(U) by (3.1.4).

Thus dim U = dim Va so that the surjective linear mapping dφ is an isomorphism for dimension reasons. �

Proposition (3.2.3). Suppose that dim U = 1. Then the action of G on U is linear.

Proof. According to (3.1.3), A (U) is an R-module of rank 1. Fix an R-basis element f ∈ A (U). Since the
units R× of R coincide with the scalars k×, any other R-basis element of A (U) is a k×-multiple of f . Since
G acts by automorphisms on U, it follows that V = k f is a (one dimensional) G-submodule of A (U), and is
a complement to A 1(U) in A (U). It is now easy to see that the mapping φ : U → V∨ of Proposition (3.2.2)
is an isomorphism (indeed, k[U] is the polynomial ring k[ f ], the comorphism φ∗ is injective, and the image
of φ∗ evidently contains f ). �

Theorem (3.2.4). Assume (R) holds for the linear algebraic group G, and suppose that G acts by group automor-
phisms on the vector group U. If Lie(U) is a simple module for G, then A (U) is a semisimple G-module. In
particular, there is a G-submodule V ⊂ A (U) for which A (U) = V +A 1(U) and A 1(U) ∩V = {0}.

Proof. In the proof, we are going to abbreviate A i = A i(U) for i ≥ 0. In view of Proposition (3.2.1)(a), the
Theorem will follow if show that the quotient G-module A /A i is semisimple for each i ≥ 1. We proceed
by induction on i; when i = 1, A /A 1 is isomorphic to the simple G-module Lie(U)∨. Now let i > 1
and suppose that the G-module A /A i−1 is known to be semisimple. There is a short exact sequence of
G-modules

([) 0→ A 1/A i → A /A i ψ−→ A /A 1 → 0.

According to Proposition (3.2.1)(b), multiplication by τ determines a G-equivariant p-linear isogeny

A /A i−1 → A 1/A i.

The G-module A /A i−1 is semisimple by the induction hypothesis, and it now follows from Theorem (2.2.7)
that A 1/A i is semisimple. Since A /A 1 is a simple G-module, the semisimplicity of A /A i will follow if
we argue that ([) is split exact.

Since G-modules are locally finite, we may choose a simple G-submodule L ⊂ A (U). In view of Propo-
sition (3.2.1)(a) and the simplicity of L, there is r ≥ 0 for which L ⊂ A r and L ∩A r+1 = 0.

The image of L is contained in the G-socle of A r/A r+i. It follows that

A r/A r+i = A r+1/A r+i + soc(A r/A r+i).

By Proposition (3.2.1)(b), multiplication by τr defines a G-equivariant pr-linear isogeny

A /A i → A r/A r+i.

It now follows from Remark (2.2.6)(c) that

A /A i = A 1/A i + soc(A /A i).

Since A /A 1 is simple, it follows that the restriction of ψ to soc(A /A i) is surjective; thus there is an exact
sequence of G-modules

(]) soc(A /A i)→ A /A 1 → 0.

Since soc(A /A i) is semisimple, (]) is split; moreover, a choice of a splitting for the sequence (]) splits the
sequence ([), as required. �

Suppose that H is a linear algebraic group over k and that V is a semisimple H-module. Given a simple
H-module L, write V(L) for the L-isotypic component of V; since V is semisimple, we have

V =
⊕

L
V(L),

the sum being taken over a system of isomorphism classes of simple H-modules L.
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Lemma (3.2.5). Let H be a linear algebraic group, let V and W be semisimple H-modules for which V ' W as
H-modules. Suppose that dim V(L) = dim W(L) < ∞ for each simple H-module L. If Φ : V → W is an H-module
that is injective, then Φ is an isomorphism.

Proof. Indeed, Φ gives by restriction an H-module homomorphism Φ(L) : V(L) →W(L) for each simple mod-
ule L; since Φ is injective and since V(L) 'W(L), the finite dimensionality shows that Φ(L) is an isomorphism
for each L, hence Φ is an isomorphism. �

Theorem (3.2.6). Assume (R) holds for the linear algebraic group G, that G acts by group automorphisms on the
vector group U, and that Lie(U) – and hence also A (U)/A 1(U) – is a simple module for the identity component G0

of G. Then the action of G on U is linear.

Proof. Apply Theorem (3.2.4) to learn that A (U) is a semisimple G-module. In particular, choose a G-
submodule V ⊂ A (U) for which A (U) = V + A 1(U) and V ∩A 1(U) = 0. Write φ : U → (V∨)a for the
G-equivariant homomorphism of algebraic groups corresponding as in Proposition (3.2.2) to the inclusion
mapping V → A (U).

We will argue that φ : U → (V∨)a is an isomorphism of algebraic groups. We first observe that the
unipotent radical R of G acts trivially on U. Indeed, since A (U) is a semisimple G-module, R acts trivially
on A (U). Since A (U) generates the k-algebra k[U], R acts trivially on k[U] and hence on U. Replacing G by
G/R, we now suppose G to be connected and reductive.

According to Proposition (3.2.3), we may suppose that dim U > 1. According to Proposition (3.1.5) it
suffices to prove that

Φ = (φ∗)|A (V∨) : A (V∨)→ A (U)

is an isomorphism of G-modules. Proposition (3.2.2) show that the tangent mapping dφ is an isomorphism.
In particular, φ is dominant - hence surjective - so the comorphism φ∗ : k[V∨] → k[U] is injective. We
conclude that Φ = (φ∗)|A (V∨) is an injective homomorphism of G-modules.

Now, A (U)/A 1(U) ' A (V∨)/A 1(V∨) as G-modules. For each i ≥ 0 it follows from Proposition
(3.2.1)(b) and Remark (2.2.6)(d) that the G/kalg

-modules

(A i(U)/A i+1(U))/kalg
and (A i(V∨)/A i+1(V∨))/kalg

are both isomorphic to the i-th Frobenius twist ((A (U)/A 1(U))/kalg
)(i). It then follows from (2.1.1)(b) that

A i(U)/A i+1(U)) ' A i(V∨)/A i+1(V∨)

as G-modules.
According to Theorem (2.2.7), both A (U) and A (V∨) are semisimple G-modules. In view of that semisim-

plicity, Proposition (3.2.1)(a) implies that A (U) is G-isomorphic to the direct sum of all A i(U)/A i+1(U)
and that a similar statement holds for A (V∨). In particular, A (U) ' A ((V∨)a) as G-modules.

To show that Φ is an isomorphism, we are going to apply Lemma (3.2.5) to the linear algebraic group
H = G0 with V = A (U) and W = A ((V∨)a). Since Φ is injective, that Lemma will show Φ to be an
isomorphism provided we argue that

(]) each isotypic component of V is a finite dimensional G0-module.

Fix a simple G0-module L. Then (]) will follow if we show that

(]]) there is N = N(L) ≥ 0 such that HomG0(L, A i(U)/A i+1(U)) = 0 for i ≥ N.

According to Proposition (2.1.3), both L/kalg
and Lie(U)/kalg

are semisimple G0
/kalg

-modules. Write

Lie(U)∨/kalg
' L1 ⊕ · · · ⊕ Ld and L/kalg

' S1 ⊕ · · · ⊕ Se

for non-trivial simple G0
/kalg

-modules Li and Sj. Using Proposition (2.1.1), we see that (]]) will follow if we

show for each 1 ≤ j ≤ e that

(]]]) there is M = M(j) ≥ 0 such that HomG/kalg
(Sj, (A i(U)/A i+1(U))/kalg

) = 0 for i ≥ M.

Now
(A i(U)/A i+1(U))/kalg

' ((A (U)/A 1(U))/kalg
)(i) ' L(i)

1 ⊕ · · · ⊕ L(i)
d .
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Since dim U > 1, Lie(U) is a non-trivial simple module for G0. Thus Lie(U)∨ ' A (U)/A 1(U) has no G0-
fixed points. In particular, the simple G/kalg

-modules Li are non-trivial. Since G0 is connected and reductive,

[Jan 03, Prop. II.3.16 and II.2.7] shows for 1 ≤ ` ≤ d that the G0-modules {L(i)
` | i ≥ 0} are simple and

pairwise non-isomorphic. Now (]]]) follows at once. Thus Φ is an isomorphism and the proof of the
Theorem is complete. �

4. LINEAR FILTRATIONS FOR CONNECTED, SPLIT UNIPOTENT GROUPS

Throughout this section, G denotes a connected linear algebraic group for which condition (R) holds. In
this section, we consider a split unipotent group U over k on which G acts by group automorphisms.

Recall from § 1.3 that the action of G on U is said to be linearly filtered if there is a filtration of U

U = U0 ⊃ U1 ⊃ · · · ⊃ Ur ⊃ Ur+1 = 0

by G-invariant closed subgroups Ui such that for each 0 ≤ i ≤ r, Ui/Ui+1 is a vector group with a linear
action of G.

4.1. G-complete reducibility and linear filtrations. We begin the discussion of linear filtrations with an
example illustrating the importance of this notion 2.

Recall that a linear algebraic group M over a field k is said to be linearly reductive provided that each
of its linear representations is completely reducible. It follows from [DG 70, IV §3.3.6] that this notion is
geometric; i.e. that M is linearly reductive if and only if M/K is linearly reductive for each field extension
k ⊂ K.

Recall that Serre has defined the notion of G-complete reducibility: a subgroup H of a reductive group
G is G-completely reducible over k provided that for each k-parabolic subgroup P of G which contains M,
there is a Levi factor L of P (defined over k) which contains M.

Proposition (4.1.1). If the linearly reductive k-group M is a subgroup of a reductive group G over k, then M is
G-completely reducible over k.

Proof. Fix a parabolic subgroup P of G containing M. It follows from [SGA 3, XXVI §2 Prop. 2.1] that the
action of P on the unipotent radical RuP is linearly filtered in the sense above. Thus, the action of M on
RuP is linearly filtered. If π : P → P/RuP is the quotient mapping, put M̃ = π−1π(M). Then RuP is the
unipotent radical of M̃. The group M̃ is evidently the semidirect product of M and RuP – i.e. M is a Levi
factor of M̃.

Choose a Levi factor L of P, let τ : L → P/Ru be an isomorphism, and let M′ = τ−1π(M). Then M′ is
a second Levi factor of M̃. The complete reducibility of linear H-modules implies that H1(M, V) = 0 for
every linear M-representation V. It now follows from [Mc 10, Thm 5.1] that M and M′ are conjugate by a
k-rational element x ∈ Ru(P)(k) – i.e. M′ = xMx−1. But then M is contained in the k-Levi subgroup x−1Lx
of P, which shows that indeed M is G-completely reducible. �

When k is algebraically closed, the preceding proposition is Lemma 2.6 of [BMR 05].

4.2. Construction of a linear filtration of a vector group with G-action. Suppose that U is a positive di-
mensional vector group on which G acts by group automorphisms.

Lemma (4.2.1). There is a simple G-module L and a separable and surjective G-equivariant homomorphism U → La
of algebraic groups.

Proof. Write A = A (U). We first claim that soc A 6⊂ A 1. In view of Proposition (2.1.4), it suffices to prove
this claim after extending scalars to an algebraic closure; thus for the time being we suppose k = kalg. In that
case, multiplication by τr ∈ R defines a pr-linear bijective mapping σr : A → A r; since G acts on k[U] by
algebra automorphisms, evidently the restriction of σr to any G-submodule V ⊂ A defines a G-equivariant
pr-linear bijection σr

|V : V → σrV. Since k is perfect, it follows from (2.2.6) that σr induces an inclusion
preserving bijection between G-submodules of A and G-submodules of A r.

2I thank Brian Conrad, Cyril DeMarche, Sebastian Herpel, and David Stewart for some discussions concerning this example. Espe-
cially, I thank DeMarche for pointing out the reference to SGA3 treating the case where G is not split over k
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Since G-modules are locally finite, any non-zero G-module has a non-zero socle. In particular, soc A 6= 0
so we may choose a simple submodule L ⊂ A . In view of Proposition (3.2.1)(a) and the simplicity of
L, evidently L ⊂ A r and L ∩ A r+1 = 0 for a suitable integer r ≥ 0. Thus, soc(A r) 6⊂ A r+1. Since σr

determines an inclusion preserving bijection between the G-submodules of A and of A r, it indeed follows
that soc(A ) 6⊂ A 1.

Having proved the claim, we return to the original setting; in particular, k is now arbitrary. Since soc A 6⊂
A 1, we may choose a simple G-submodule L ⊂ A such that L ∩A 1 = 0. It then follows from (3.2.2)(a)
that there is a G-equivariant, separable, surjective homomorphism of algebraic groups φ : U → (L∨)a, as
required. �

Lemma (4.2.2). (a) There is a positive dimensional, closed, G-invariant subgroup W ⊂ U and a G-equivariant
isomorphism W ' Lie(W)a of algebraic groups.

(b) The action of G on U is linearly filtered.

Proof. To prove (a), we proceed by induction on the composition length n of Lie(U) as a G-module. First
suppose that n = 1, so that Lie(U) is a simple G-module. Since G is connected, Theorem (3.2.6) implies that
indeed U ' Lie(U)a.

Now suppose n > 1 and that the result is known for vector groups V with G-action for which the com-
position length of the G-module Lie(V) is strictly less than n. Use Lemma (4.2.1) to find a separable and
surjective G-equivariant homomorphism of algebraic groups φ : U → La for a simple G-module L. Since
dφ is surjective, the kernel of φ is a smooth group scheme over K; thus the identity component V of ker φ is a
vector group on which G acts. There is a short exact sequence of G-modules

0→ Lie(V)→ Lie(U)→ Lie(La) = L→ 0.

In particular, the composition length of the G-module Lie(V) is n − 1, so by induction V – and hence U
– contains a closed G-invariant positive dimensional subgroup W for which there is a G-equivariant iso-
morphism W ' Lie(W)a of algebraic groups. Now (b) follows from (a) by induction on the dimension of
U. �

4.3. Linear filtrations of split unipotent groups. We apply the results of the previous section to study
connected, split unipotent groups over k. We obtain the following Theorem:

Theorem (4.3.1). Let G be a connected linear algebraic group over k for which (R) holds. Let U be a connected, split,
unipotent group over k and suppose that G acts by group automorphisms on U. Then the action of G on U is linearly
filtered.

Proof. According to [Sp 98, Exerc. 14.3.12(2) and (3)] the derived subgroup (U, U) is a connected, split
unipotent group over k, and the quotient U/(U, U) is a connected, commutative, split, unipotent group
over k. The subgroup (U, U) is characteristic – in particular, it is invariant under the the action of G. If the
conclusion of the Theorem holds for (U, U) and for U/(U, U), it clearly holds for U.

By induction on the dimension of U, we are thus reduced to the case where U is commutative. In that case,
let U(p) be the subgroup generated by p-th powers. U(p) is again characteristic, hence invariant under the
action of G. Moreover, [Sp 98, Exerc. 14.3.12(2) and (3)] again implies that U(p) and U/U(p) are connected,
split, commutative unipotent groups. If the conclusion of the Theorem holds for U(p) and U/U(p), it holds
for U. Observe that the U/U(p) has exponent p, so that according to [CGP 10, Theorem B.2.5] the group
U/U(p) is a vector group.

By another induction on the dimension of U, it is enough to give the proof when U is a vector group. The
result in that case has already been established in Lemma (4.2.2)(b). �

5. EXAMPLES OF NON-LINEAR ACTIONS

Let G be a linear algebraic group over k. In this section, we give examples of vector groups U having
an action of G by group automorphisms which is not linear – i.e. for which there is no G-equivariant
isomorphism Lie(U)a → U. For simplicity, we assume that k is algebraically closed. In particular, in this
section we often write G for the group of k-points G(k). And if V is a vector space, we often identify the
corresponding vector group Va with V.
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5.1. Linear extensions of G-modules. Suppose that the G-module E is an extension of the G-module V by
the G-module W; i.e. there is a short exact sequence of G-module

(∗) 0→W → E→ V → 0.

Extensions of the form (∗) are parametrized by a cohomology group, namely

Ext1
G(V, W) ' H1(G, Homk(V, W))

Recall that the action g ? φ of an element g ∈ G on an element φ ∈ Homk(V, W) is given by rule

g ? φ = g ◦ φ ◦ g−1(= ρV(g) ◦ φ ◦ ρW(g−1))

where in the parenthetical formulation ρV : G → GL(V) and ρW : G → GL(W) are the homomorphisms
defining the G-modules. Using the above identification, elements in Ext1

G(V, W) may be viewed as equiva-
lence classes of 1-cocycles G → Homk(V, W).

For convenience, we are going to reformulate this cocycle description of Ext1
G(V, W). Let us write

Z1 = Z1(G, Homk(V, W)) = {σ | σgh = g ? σh + σg for g, h ∈ G}.

where σ : G → Homk(V, W) denotes a regular mapping denoted by (g 7→ σg).
Similarly, write

Z1
0 = Z1

0(G, Homk(V, W)) = {τ | τgh = g ◦ τh + τg ◦ h for g, h ∈ G}
= {τ | τgh = ρW(g) ◦ τh + τg ◦ ρV(h) for g, h ∈ G}.

where again τ : G → Homk(V, W) denotes a regular mapping denoted by (g 7→ τg).
Since Homk(V, W) is a k-vector space, also Z1 and Z1

0 both have a natural structure of k-vector space.
Given φ ∈ Homk(V, W), define two regular functions G → Homk(V, W) by the rules

∂(φ)g = g ? φ− φ and ∂0(φ)g = g ◦ φ− φ ◦ g = ρW(g) ◦ φ− φ ◦ ρV(g)

for g ∈ G. Of course, ∂ is the usual cohomology boundary mapping, so ∂φ ∈ Z1. One checks that ∂0φ ∈ Z1
0 ,

so these rules determine linear mappings

∂ : Homk(V, W)→ Z1 and ∂0 : Homk(V, W)→ Z1
0 .

(5.1.1). The mapping ι : Z1 → Z1
0 defined by σ 7→ (g 7→ σg ◦ g = σg ◦ ρW(g)) determines an isomorphism

H1(G, Homk(V, W)) = Z1/ im ∂
∼−→ Z1

0/ im ∂0.

Sketch. Of course, H1(G, Homk(V, W)) = Z1/ im ∂ is the definition of Hochschild cohomology. Now one
checks for σ ∈ Z1 that the rule ι(σ) defined by g 7→ σg ◦ g determines an element of Z1

0 . Since ι is evidently
invertible, the result follows upon observing that ι ◦ ∂ = ∂0. �

Given a short exact sequence (∗), choose a linear section s : V → E to the projection π : E → V. Using s,
one forms the regular function

τ : G → Homk(V, W) via g 7→ τg = g ◦ s− s ◦ g = ρW(g) ◦ s− s ◦ ρV(g),

and one readily checks that τ ∈ Z1
0 . Conversely, given τ ∈ Z1

0(G, Homk(V, W)), one constructs a corre-
sponding extension

0→W → Eτ → V → 0

where Eτ = V ×W as varieties, with G-action given by

g.
(

v
w

)
=

(
gv

gw + τg(v)

)
for g ∈ G(k), v ∈ V and w ∈W.

Another linear section s′ : V → E has the form s + φ for φ ∈ Homk(V, W). And the extension (∗) is split
if and only if s + φ ∈ HomG(V, W) for some φ. If τ ∈ Z1

0 is constructed from the section s, the section s + φ
is G-linear if and only if τ = ∂0φ.

This correspondence describes the bijection between elements of H1(G, Homk(V, W)) ' Ext1
G(V, W) and

isomorphism classes of extensions (∗).
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5.2. Non-linear extensions. Now, consider G-modules V and W and fix a cocycle

τ ∈ Z1
0(G, Homk(V, W))

as in §5.1.
Write F : W →W(1) for the G-equivariant p-linear bijection of Remark (2.2.6)(d) and write Homp(V, W(1))

for the group of all p-linear mappings V →W(1).
There is a regular function

τ̃ = F∗ ◦ τ : G τ−→ Homk(V, W)
F∗−→ Homp(V, W(1))

where F∗( f ) = F ◦ f . Evidently τ̃ satisfies the cocycle condition

(∗∗) τ̃gh = ρW(1)(g) ◦ τ̃h + τ̃g ◦ ρV(h).

We use τ̃ to define a vector group Ẽ = Eτ̃ with an action of G as follows. The underlying vector group is
Ẽ = V × (W(1)) and the action of an element g ∈ G = G(k) on an element of Ẽ(k) = V ×W(1) is given by
the rule

g.
(

v
w

)
=

(
gv

gw + τ̃g(v)

)
=

(
gv

gw + F(τg(v))

)
for v ∈ V and w ∈W(1);

using the cocycle condition (∗∗), one now checks that this rule defines an action of G on Ẽ by group auto-
morphisms.

Lemma (5.2.1). There is an isomorphism of G-modules Lie(Ẽ) ' V ⊕W(1).

Proof. Indeed, since V and W(1) are linear representations of G, there are G-equivariant isomorphisms V '
Lie(V) and W(1) ' Lie(W(1)). Thus Lie(Ẽ) is a (linear) extension of the G-module V by the G-module W(1).

Write s : V → Ẽ for the section v 7→
(

v
0

)
so that τ̃g = g ◦ s − s ◦ g. Then ds : V = Lie(V) → Lie(Ẽ)

is a linear section, so by the rule described in §5.1, the extension Lie(Ẽ) of V by W(1) is determined by the
cocycle σ for which σg = g ◦ ds− ds ◦ g = dτ̃g = d(F ◦ τg).

But the tangent mapping of F : W → W(1) is identically zero; thus σ(g) is zero for each g ∈ G(k). It
follows that Lie(Ẽ) is the trivial extension of V by W(1). �

We are going to argue that in general the action of G on Ẽ is not linear. If V is a finite dimensional k-vector
space viewed as a vector group, write A (V) ⊂ k[V] for the space of additive functions on V as in §3. Recall
that k[V] = Sym(V∨) is the symmetric algebra on the vector space dual to V. If k[V] =

⊕
m≥0 k[V]m is the

grading for which V∨ = k[V]1, write for each m ≥ 1

A (V)m = A (V) ∩ k[V]m.

We require the following result.

Lemma (5.2.2). Let V and W be finite dimensional k-vector spaces, and let φ : V →W be a homomorphism of vector
groups.
(a) A (V)m 6= 0 if and only if m = pr for some r. Moreover, A (V)1 = V∨ and A (V)pr = (V∨)pr

where the pr-th
powers are taken in the algebra k[V].

(b) A (V) =
⊕

r≥0 A (V)pr .
(c) If λ : W∨ → A (V) is the linear map determined by φ as in Proposition (3.1.6), then φ is p-linear if and only if

the image of λ lies in A (V)p.

Proof. (a) and (b) follow from the description found in Lemma (3.1.3). Note that in (a), the equality A (V)pr =

(V∨)pr
holds since k is algebraically closed.

For (c), first use (b) to write λ = ∑r≥0 λr where λr : W∨ → A (V)pr is a linear map for r ≥ 0. Write
φ∗ : k[W]→ k[V] for the comorphism of φ. The grading in (a), respectively the analogous grading for k[W],
is determined by the action of Gm on k[V], respectively on k[W], obtained from the scalar action of Gm on V,
respectively W. Thus, φ is p-linear if and only if for each i ≥ 0, φ∗ maps k[W]i to k[V]pi if and only if λ = λ1,
and (c) follows. �

We now prove:



LINEARITY FOR ACTIONS ON VECTOR GROUPS 17

Proposition (5.2.3). Let τ ∈ Z1
0 = Z1

0(G, Homk(V, W)) and construct the vector group Ẽ with G-action using the
regular function τ̃ as above. If the cohomology class [τ] ∈ Z1

0/ im ∂0 ' H1(G, Homk(V, W)) is non-zero, there is
no G-equivariant isomorphism between Lie(Ẽ) and Ẽ.

Proof. In view of Lemma (5.2.1), it suffices to prove that if the class [τ] is non-zero, there is no G-equivariant
homomorphism V → Ẽ which is a section to the quotient mapping π : Ẽ → V. In fact, we are going to
prove the equivalent assertion that if there is a G-equivariant section to π, then [τ] = 0.

In the explicit description of Ẽ given above, let us fix the section s : V → Ẽ given by

v 7→
(

v
0

)
for v ∈ V.

Then any homomorphism V → Ẽ of algebraic groups which is a section to π has the form

Fφ : v 7→
(

v
φ(v)

)
for some homomorphism of algebraic groups φ : V →W(1).

A calculation shows that the homomorphism Fφ : V → Ẽ is G-equivariant if and only if

τ̃g = ρW(1)(g) ◦ φ− φ ◦ ρV(g) = g ◦ φ− φ ◦ g

for each g ∈ G. So let us fix φ such that Fφ is G-equivariant. Note for g ∈ G, t ∈ k× and v ∈ V that

τ̃g(tv) = tpτ̃g(v),

and therefore
gφ(tv)− φ(gtv) = tp(gφ(v)− φ(gv));

in other words, g ◦ φ− φ ◦ g is p-linear for each g ∈ G.
According to Proposition (3.1.6) φ is uniquely determined by a linear map λ : (W(1))∨ → A (V). In

view of Lemma (5.2.2)(a), we may write λ = ∑r≥0 λr where λr is a linear mapping (W(1))∨ → A (V)pr (and
λr = 0 for all but finitely many r).

Applying Lemma (5.2.2)(b) shows that the p-linear homomorphism g ◦ φ− φ ◦ g : V → W(1) is uniquely
determined by a linear mapping µ : (W(1))∨ → A (V)p = (V∨)p.

We thus deduce that
µ = ∑

r≥0
(g ◦ λr − λr ◦ g)

so that
µ = g ◦ λ1 − λ1 ◦ g and g ◦ λr − λr ◦ g = 0 for r 6= 1.

According to Lemma (5.2.2)(b), the linear map λ1 determines a p-linear map Λ : V → W(1). It follows at
once that there is a linear map Γ : V →W such that Λ = F ◦ Γ.

Now observe for g ∈ G that the group homomorphism F ◦ τg = τ̃g : V →W(1) satisfies

F ◦ τg = g ◦Λ−Λ ◦ g = g ◦ F ◦ Γ− F ◦ Γ ◦ g = F ◦ (g ◦ Γ− Γ ◦ g),

where we have invoked the G-equivariance of the mapping F. Since F is bijective, deduce that τg = g ◦ Γ−
Γ ◦ g for each g ∈ G. Since k is algebraically closed, this proves that τ is the trivial co-cycle, as required. �

Remark (5.2.4). Note that for G-modules V and W, the cohomology group H1(G, Homk(V, W)) may be
identified with Ext1

G(V, W). Thus, according to Proposition (5.2.3), any non-split extension of G-modules
gives rise to a vector group U with G-action for which there is no G-equivariant isomorphism between U
and Lie(U).

There are many non-split extensions of G-modules. If G is a reductive group with maximal torus T con-
tained in the Borel group B, let λ ∈ X∗(T) be a dominant weight. Let H0(λ) be the standard module
determined by λ as in [Jan 03, §II.2]. Then H0(λ) has a unique simple submodule L(λ) [Jan 03, §II.2] and
hence there is a short exact sequence of G-modules

(♣) 0→ L(λ)→ H0(λ)→ C → 0;

this short exact sequence is non-split if and only if C 6= 0, i.e. if and only if H0(λ) is not simple.
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To give an explicit example, let G = SL(V). In that case, [Jan 03, II.2.16] shows that V = H0(ω) = L(ω)
for a fundamental dominant weight ω, and that moreover H0(pω) ' Symp(V) is the p-th symmetric power
of V. On the other hand, L(pω) ' V(1) is the first Frobenius twist of V. Since dim V(1) = dim V <
dim Symp(V), one sees that H0(pω) is not simple so that (♣) is not split. In this case, our construction gives
a non-linear extension of C = Symp(V)/V(1) by L(pω)(1) = L(p2ω) = V(2).
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[Ti 71] J. Tits, Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconque, J. Reine Angew. Math. 247 (1971),

196–220 (French).

DEPARTMENT OF MATHEMATICS, TUFTS UNIVERSITY, 503 BOSTON AVENUE, MEDFORD, MA 02155, USA
E-mail address: george.mcninch@tufts.edu, mcninchg@member.ams.org


